Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.585
Filtrar
1.
Eur J Cell Biol ; 102(4): 151370, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922811

RESUMO

A fair amount of research on microtubules since their discovery in 1963 has focused on their dynamic tips. In contrast, the microtubule lattice was long believed to be highly regular and static, and consequently received far less attention. Yet, as it turned out, the microtubule lattice is neither as regular, nor as static as previously believed: structural studies uncovered the remarkable wealth of different conformations the lattice can accommodate. In the last decade, the microtubule lattice was shown to be labile and to spontaneously undergo renovation, a phenomenon that is intimately linked to structural defects and was called "microtubule self-repair". Following this breakthrough discovery, further recent research provided a deeper understanding of the lattice self-repair mechanism, which we review here. Instrumental to these discoveries were in vitro microtubule reconstitution assays, in which microtubules are grown from the minimal components required for their dynamics. In this review, we propose a shift from the term "lattice self-repair" to "lattice dynamics", since this phenomenon is an inherent property of microtubules and can happen without microtubule damage. We focus on how in vitro microtubule reconstitution assays helped us learn (1) which types of structural variations microtubules display, (2) how these structural variations influence lattice dynamics and microtubule damage caused by mechanical stress, (3) how lattice dynamics impact tip dynamics, and (4) how microtubule-associated proteins (MAPs) can play a role in structuring the lattice. Finally, we discuss the unanswered questions about lattice dynamics and how technical advances will help us tackle these questions.


Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
2.
Eur J Cell Biol ; 102(4): 151366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871345

RESUMO

Microtubules are essential cytoskeletal polymers, which exhibit stochastic transitions between assembly and disassembly, known as catastrophes and rescues. Understanding of catastrophes, rescues, and their control by drugs and microtubule associated proteins (MAPs) has been informed by in vitro reconstitutions of microtubule dynamics. In such experiments microtubules are typically observed on a flat surface of the coverslip. In contrast, we have recently proposed a modified setup in which microtubules assemble from stabilized seeds, overhanging from microfabricated pedestals, so that their dynamic extensions are fully isolated from contact with the coverslip. This assay allows to eliminate potential artifacts, which may substantially affect the frequency of microtubule rescues in vitro. Here we use the pedestal assay to study the sensitivity of microtubules to paclitaxel, one of the best-known inhibitors of microtubule dynamics. By comparing observations in the conventional and the pedestal assays, we find that microtubule dynamics are substantially more sensitive to paclitaxel when the polymers can contact the coverslip. We interpret this as a consequence of the coverslip-induced microtubule assembly perturbation, leading to formation of lattice with defects, and thereby enhancing the efficiency of paclitaxel binding to microtubules in the conventional assay. To test this idea, we use vinblastine, another small-molecule inhibitor, which had been previously shown to cause microtubule growth perturbations. We find that in the pedestal assay vinblastine sensitizes microtubules to paclitaxel to the level, observed in the conventional assay. Interestingly, a minimal fragment of MAP called CLASP2, a previously characterized rescue factor, has a strong effect on microtubule rescues, regardless of the type of assay. Overall, our study underscores the role of microtubule damage in promoting rescues and highlights the utility of the in vitro pedestal assay to study microtubule dynamics modulation by tubulin inhibitors and MAPs.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vimblastina/farmacologia , Vimblastina/análise , Vimblastina/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/análise , Paclitaxel/metabolismo , Polímeros/análise , Polímeros/metabolismo , Polímeros/farmacologia
3.
Biochem Soc Trans ; 51(4): 1505-1520, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37560910

RESUMO

Kinesin motor proteins couple mechanical movements in their motor domain to the binding and hydrolysis of ATP in their nucleotide-binding pocket. Forces produced through this 'mechanochemical' coupling are typically used to mobilize kinesin-mediated transport of cargos along microtubules or microtubule cytoskeleton remodeling. This review discusses the recent high-resolution structures (<4 Å) of kinesins bound to microtubules or tubulin complexes that have resolved outstanding questions about the basis of mechanochemical coupling, and how family-specific modifications of the motor domain can enable its use for motility and/or microtubule depolymerization.


Assuntos
Cinesinas , Tubulina (Proteína) , Cinesinas/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Trifosfato de Adenosina/metabolismo , Microtúbulos/metabolismo , Miosinas
4.
J Chem Theory Comput ; 19(16): 5621-5632, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37489636

RESUMO

Simulating the conformations and functions of biological macromolecules by using all-atom (AA) models is a challenging task due to expensive computational costs. One possible strategy to solve this problem is to develop hybrid all-atom and ultra-coarse-grained (AA/UCG) models of the biological macromolecules. In the AA/UCG scheme, the interest regions are described by AA models, while the other regions are described in the UCG representation. In this study, we develop the hybrid AA/UCG models and apply them to investigate the conformational changes of microtubule-bound tubulins. The simulation results of the hybrid models elucidated the mechanism of why the taxol molecules selectively bound microtubules but not tubulin dimers. In addition, we also explore the interactions of the microtubules and dyneins. Our study shows that the hybrid AA/UCG model has great application potential in studying the function of complex biological systems.


Assuntos
Dineínas , Paclitaxel , Dineínas/análise , Dineínas/química , Dineínas/metabolismo , Paclitaxel/farmacologia , Microtúbulos/química , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Conformação Molecular
5.
Zhonghua Shao Shang Za Zhi ; 38(11): 1066-1072, 2022 Nov 20.
Artigo em Chinês | MEDLINE | ID: mdl-36418264

RESUMO

Objective: To investigate the regulatory effects of bio-intensity electric field on directional migration and microtubule acetylation in human epidermal cell line HaCaT, aiming to provide molecular theoretical basis for the clinical treatment of wound repair. Methods: The experimental research methods were used. HaCaT cells were collected and divided into simulated electric field group (n=54) placed in the electric field device without electricity for 3 h and electric field treatment group (n=52) treated with 200 mV/mm electric field for 3 h (the same treatment methods below). The cell movement direction was observed in the living cell workstation and the movement velocity, trajectory velocity, and direction of cosθ of cell movement within 3 h of treatment were calculated. HaCaT cells were divided into simulated electric field group and electric field treatment 1 h group, electric field treatment 2 h group, and electric field treatment 3 h group which were treated with 200 mV/mm electric field for corresponding time. HaCaT cells were divided into simulated electric field group and 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group treated with electric field of corresponding intensities for 3 h. The protein expression of acetylated α-tubulin was detected by Western blotting (n=3). HaCaT cells were divided into simulated electric field group and electric field treatment group, and the protein expression of acetylated α-tubulin was detected and located by immunofluorescence method (n=3). Data were statistically analyzed with Kruskal-Wallis H test,Mann-Whitney U test, Bonferroni correction, one-way analysis of variance, least significant difference test, and independent sample t test. Results: Within 3 h of treatment, compared with that in simulated electric field group, the cells in electric field treatment group had obvious tendency to move directionally, the movement velocity and trajectory velocity were increased significantly (with Z values of -8.53 and -2.05, respectively, P<0.05 or P<0.01), and the directionality was significantly enhanced (Z=-8.65, P<0.01). Compared with (0.80±0.14) in simulated electric field group, the protein expressions of acetylated α-tubulin in electric field treatment 1 h group (1.50±0.08) and electric field treatment 2 h group (1.89±0.06) were not changed obviously (P>0.05), while the protein expression of acetylated α-tubulin of cells in electric field treatment 3 h group (3.37±0.36) was increased significantly (Z=-3.06, P<0.05). After treatment for 3 h, the protein expressions of acetylated α-tubulin of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 300 mV/mm electric field group were 1.63±0.05, 2.24±0.08, and 2.00±0.13, respectively, which were significantly more than 0.95±0.27 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of acetylated α-tubulin in 200 mV/mm electric field group and 300 mV/mm electric field group were increased significantly (P<0.01); the protein expression of acetylated α-tubulin of cells in 300 mV/mm electric field group was significantly lower than that in 200 mV/mm electric field group (P<0.05). After treatment for 3 h, compared with that in simulated electric field group, the acetylated α-tubulin of cells had enhanced directional distribution and higher protein expression (t=5.78, P<0.01). Conclusions: Bio-intensity electric field can induce the directional migration of HaCaT cells and obviously up-regulate the level of α-ubulin acetylation after treatment at 200 mV/mm bio-intensity electric field for 3 h.


Assuntos
Microtúbulos , Tubulina (Proteína) , Humanos , Acetilação , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Eletricidade , Células Epidérmicas/química , Células Epidérmicas/metabolismo
6.
J Phys Chem Lett ; 13(41): 9725-9735, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36222421

RESUMO

Tubulin nucleation is a highly frequent event in microtubule (MT) dynamics but is poorly understood. In this work, we characterized the structural changes during the initial nucleation phase of dynamic tubulin. Using size-exclusion chromatography-eluted tubulin dimers in an assembly buffer solution free of glycerol and tubulin aggregates enabled us to start from a well-defined initial thermodynamic ensemble of isolated dynamic tubulin dimers and short oligomers. Following a temperature increase, time-resolved X-ray scattering and cryo-transmission electron microscopy during the initial nucleation phase revealed an isodesmic assembly mechanism of one-dimensional (1D) tubulin oligomers (where dimers were added and/or removed one at a time), leading to sufficiently stable two-dimensional (2D) dynamic nanostructures, required for MT assembly. A substantial amount of tubulin octamers accumulated before two-dimensional lattices appeared. Under subcritical assembly conditions, we observed a slower isodesmic assembly mechanism, but the concentration of 1D oligomers was insufficient to form the multistranded 2D nucleus required for MT formation.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Glicerol/análise , Raios X , Polímeros
7.
An Acad Bras Cienc ; 94(3): e20210917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35920489

RESUMO

Molecular machines, as exemplified by the kinesin and microtubule system, are responsible for molecular transport in cells. The monitoring of the cellular machinery has attracted much attention in recent years, requiring sophisticated techniques such as optical tweezers, and dark field hyperspectral and fluorescence microscopies. It also demands suitable procedures for immobilization and labeling with functional agents such as dyes, plasmonic nanoparticles and quantum dots. In this work, microtubules were co-polymerized by incubating a tubulin mix consisting of 7 biotinylated tubulin to 3 rhodamine tubulin. Rhodamine provided the fluorescent tag, while biotin was the anchoring group for receiving streptavidin containing species. To control the microtubule alignment and consequently, the molecular gliding directions, functionalized iron oxide nanoparticles were employed in the presence of an external magnet field. Such iron oxide nanoparticles, (MagNPs) were previously coated with silica and (3-aminopro-pyl)triethoxysilane (APTS) and then modified with streptavidin (SA) for linking to the biotin-functionalized microtubules. In this way, the binding has been successfully performed, and the magnetic alignment probed by Inverted Fluorescence Microscopy. The proposed strategy has proved promising, as tested with one of the most important biological structures of the cellular machinery.


Assuntos
Biotina , Tubulina (Proteína) , Biotina/análise , Biotina/química , Biotina/metabolismo , Óxido Ferroso-Férrico/análise , Óxido Ferroso-Férrico/metabolismo , Fenômenos Magnéticos , Microscopia de Fluorescência , Microtúbulos/química , Microtúbulos/metabolismo , Rodaminas/análise , Rodaminas/metabolismo , Estreptavidina/análise , Estreptavidina/química , Estreptavidina/metabolismo , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo
8.
Anal Chem ; 94(32): 11168-11174, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35917443

RESUMO

In vitro assays using reconstituted microtubules have provided molecular insights into the principles of microtubule dynamics and the roles of microtubule-associated proteins. Emerging questions that further uncover the complexity in microtubule dynamics, especially those on tubulin isotypes and post-translational modifications, raise new technical challenges on how to visualize microtubules composed of tubulin purified from limited sources, primarily due to the low efficiency of the conventional tubulin labeling protocol. Here, we develop a peptide probe, termed TUBright, that labels in vitro reconstituted microtubules. TUBright, when coupled with different fluorescent dyes, provides flexible labeling of microtubules with a high signal-to-noise ratio. TUBright does not interfere with the dynamic behaviors of microtubules and microtubule-associated proteins. Therefore, TUBright is a useful tool for imaging microtubules, making it feasible to use tubulin from limited sources for answering many open questions on microtubule dynamics.


Assuntos
Microtúbulos , Tubulina (Proteína) , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Peptídeos/análise , Processamento de Proteína Pós-Traducional , Tubulina (Proteína)/análise
9.
Methods Mol Biol ; 2430: 337-347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476343

RESUMO

High-speed atomic force microscopy (AFM) is a versatile method that can visualize proteins and protein systems on the nanometer scale and at a temporal resolution of 100 ms. The application to microtubules can not only reveal structural information with single-tubulin resolution but can also extract mechanical information and allows to study single motor proteins walking on microtubules, among others. This chapter provides a step-by-step guide from microtubule polymerization to successful observation with high-speed AFM.


Assuntos
Microtúbulos , Tubulina (Proteína) , Microscopia de Força Atômica/métodos , Microtúbulos/química , Miosinas , Proteínas/análise , Tubulina (Proteína)/análise
10.
Elife ; 112022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029146

RESUMO

Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Microtúbulos/fisiologia , Fuso Acromático/química , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo
11.
Biochem Biophys Res Commun ; 560: 186-191, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33992960

RESUMO

Microtubules form a major cytoskeleton and exhibit dynamic instability through the repetitive polymerization/depolymerization of tubulin dimers. Although microtubule stability should be precisely controlled to maintain various cellular functions, it has been difficult to assess its status in vivo. Here, we propose a tubulin fractionation method reflecting the stability of microtubules in mouse tissues. Analyses of tubulin fractionated by two-step of ultracentrifugation demonstrated three distinct pools of tubulin, that appeared to be stable microtubule, labile microtubule, and free tubulin. Using this method, we were able to show the specific binding of different microtubule-associated proteins onto each pool of microtubules. Also, there were clear differences in the population of stable microtubule among tissues depending on the proliferative capacity of the constituent cells. These findings indicate that this method is useful for broad analysis of microtubule stability in physiological and pathological conditions.


Assuntos
Microtúbulos/metabolismo , Animais , Encéfalo/metabolismo , Química Encefálica , Fracionamento Celular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/química , Tubulina (Proteína)/análise , Tubulina (Proteína)/isolamento & purificação , Ultracentrifugação
12.
Curr Stem Cell Res Ther ; 16(8): 994-1004, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33655875

RESUMO

Neurological diseases have different etiological causes. Contemporary, developing an effective treatment for these diseases is an ongoing challenge. Cell therapy is recognized as one of the promising solutions for the treatment of these diseases. Amongst various types of stem cells, bone marrow-derived mesenchymal stem cells (BM-MSC) are known to be the most widely used stem cells. These cells are endowed with appealing properties such as the ability to differentiate into other cell types, including the muscle, liver, glial, and nerve cells. In this review study, we have systematically evaluated the ability of a variety of chemical compounds used in the last ten years to differentiate BM-MSCs into neurons by examining the expression level of beta-tubulin 3 protein. The present study is a systematic search performed at three separate databases, including PubMed, ScienceDirect, and Embase from August 2009 to August 2019. The search results in the three mentioned databases were 323 articles and finally, 8 articles were selected and carefully examined considering the inclusion and exclusion criteria. The results showed that different chemical compounds such as ROCK inhibitors, sex steroid hormones, bFGF, NGF, Noggin, 4 OHT, TSA, VPA, Antidepressants, Neurosteroids (Dex and E2), and DHA are involved in different signaling pathways, such as ERK, AKT, BMP, DHA / GPR40, Rho-dependent phosphorylation, and histone deacetylase inhibitors. Further investigation of these signaling pathways may open the way for better differentiation of BM-MSCs into neurons.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Neurônios/citologia , Tubulina (Proteína)/análise , Medula Óssea , Células da Medula Óssea , Humanos , Células-Tronco Mesenquimais/citologia
13.
Exp Eye Res ; 205: 108499, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33610603

RESUMO

Super-resolution microscopy revolutionized biomedical research with significantly improved imaging resolution down to the molecular scale. To date, only limited studies reported multi-color super-resolution imaging of thin tissue slices mainly because of unavailable staining protocols and incompatible imaging techniques. Here, we show the first super-resolution imaging of flat-mounted whole mouse cornea using single-molecule localization microscopy (SMLM). We optimized immunofluorescence staining protocols for ß-Tubulin, Vimentin, Peroxisome marker (PMP70), and Histone-H4 in whole mouse corneas. Using the optimized staining protocols, we imaged these four intracellular protein structures in the epithelium and endothelium layers of flat-mounted mouse corneas. We also achieved simultaneous two-color spectroscopic SMLM (sSMLM) imaging of ß-Tubulin and Histone-H4 in corneal endothelial cells. The spatial localization precision of sSMLM in these studies was around 20-nm. This work sets the stage for investigating multiple intracellular alterations in corneal diseases at a nanoscopic resolution using whole corneal flat-mount beyond cell cultures.


Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Córnea/diagnóstico por imagem , Histonas/análise , Imagem Individual de Molécula/métodos , Tubulina (Proteína)/análise , Vimentina/análise , Animais , Córnea/química , Imunofluorescência/métodos , Corantes Fluorescentes/química , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Coloração e Rotulagem
14.
Angew Chem Int Ed Engl ; 60(2): 716-720, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-32936507

RESUMO

Visualizing the functional interactions of biomolecules such as proteins and nucleic acids is key to understanding cellular life on the molecular scale. Spatial proximity is often used as a proxy for the direct interaction of biomolecules. However, current techniques to visualize spatial proximity are either limited by spatial resolution, dynamic range, or lack of single-molecule sensitivity. Here, we introduce Proximity-PAINT (pPAINT), a variation of the super-resolution microscopy technique DNA-PAINT. pPAINT uses a split-docking-site configuration to detect spatial proximity with high sensitivity, low false-positive rates, and tunable detection distances. We benchmark and optimize pPAINT using designer DNA nanostructures and demonstrate its cellular applicability by visualizing the spatial proximity of alpha- and beta-tubulin in microtubules using super-resolution detection.


Assuntos
Microscopia de Fluorescência/métodos , Tubulina (Proteína)/análise , Anticorpos/imunologia , DNA/química , DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Microtúbulos/química , Nanoestruturas/química , Hibridização de Ácido Nucleico , Tubulina (Proteína)/imunologia
15.
Virchows Arch ; 478(2): 327-334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32710188

RESUMO

Urothelial carcinoma (UC) comprises two subtypes, low grade (LG-UC) and high grade (HG-UC), with different pathological and clinical behavior. LG-UC and HG-UC are classified based on cellular and structural atypia of pathological findings. The mechanisms responsible for maintaining structural atypia, such as the disturbance of nuclear polarity, remain unclear. In this study, we studied microtubule-organizing center (MTOC)-mediated nuclear polarity in UC subtypes. We evaluated six cases with normal urothelium (NU), 10 LG-UC cases, and 10 HG-UC cases by double immunofluorescence staining of γ-tubulin as a marker of MTOC and E-cadherin as a marker of each cell border. The number and position of γ-tubulin dots of expression in more than 100 cells per case were assessed using the spatial relationship with the nucleus and surface-basal axis. We found one γ-tubulin dot in most normal and tumor cells, and more than two γ-tubulin dots in 4.6% of NU cells, 6.1% of LG-UC cells, and 9.8% of HG-UC cells. More than three γ-tubulin dots were found only in 1.2% of HG-UC cells. Surface side positioning of γ-tubulin was found in 77.4% of normal urothelial cells, 63.8% of LG-UC cells, and 39.2% of HG-UC cells, whereas aberrant lateral and basal side positioning of γ-tubulin was found in 22.6% of normal urothelial cells, 36.1% of LG-UC cells, and 60.8% of HG-UC cells. We concluded that numerical and positional aberrations of MTOC in UC cases were strongly correlated with both cellular and structural atypia as well as abnormal cell proliferation.


Assuntos
Carcinoma/patologia , Núcleo Celular/patologia , Centro Organizador dos Microtúbulos/patologia , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Biomarcadores Tumorais/análise , Caderinas/análise , Carcinoma/química , Carcinoma/cirurgia , Núcleo Celular/química , Proliferação de Células , Feminino , Humanos , Masculino , Centro Organizador dos Microtúbulos/química , Pessoa de Meia-Idade , Gradação de Tumores , Tubulina (Proteína)/análise , Neoplasias da Bexiga Urinária/química , Neoplasias da Bexiga Urinária/cirurgia , Urotélio/química , Urotélio/cirurgia
16.
Int J Legal Med ; 134(5): 1775-1782, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32632798

RESUMO

In recent years, protein decomposition has become of increasing interest for the use in forensic estimation of the postmortem interval (PMI). Especially skeletal muscle tissue has proven to be a prime target tissue, among other reasons, due to its large abundance in the human body. In this regard, it is important to know whether there are any intra- and intermuscular differences in the behavior of protein degradation. Thus, samples from different locations within several skeletal muscles as well as from cardiac and smooth muscle tissue samples were collected from three autopsy cases with varying degree of decomposition. Samples were analyzed by SDS-PAGE and Western blotting and compared for protein degradation patterns. Intramuscular variations turned out to be minimal and without major influence for the use of the method. Observed intermuscular differences provide possibilities for future improvement of the precision and temporal application range. The results of this study show the strengths and current limitations of protein degradation-based PMI estimation and provide a deeper understanding of intraindividual postmortem protein degradation processes.


Assuntos
Actinina/análise , Músculo Esquelético/química , Músculo Liso/química , Miocárdio/química , Proteólise , Tubulina (Proteína)/análise , Vinculina/análise , Adulto , Idoso , Western Blotting , Eletroforese em Gel de Poliacrilamida , Patologia Legal , Humanos , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte
17.
Anal Chem ; 92(16): 11204-11212, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639142

RESUMO

Acetylation of α-tubulin at conserved lysine 40 (K40) amino acid residue regulates microtubule dynamics and controls a wide range of cellular activities. Dysregulated microtubule dynamics characterized by differential α-tubulin acetylation is a hallmark of cancer, neurodegeneration, and other complex disorders. Hence, accurate quantitation of α-tubulin acetylation is required in human disease and animal model studies. We developed a novel antibody-free proteomics assay to measure α-tubulin acetylation targeting protease AspN-generated peptides harboring K40 site. Using the synthetic unmodified and acetylated stable isotope labeled peptides DKTIGGG and DKTIGGGD, we demonstrate assay linearity across 4 log magnitude and reproducibility of <10% coefficient of variation. The assay accuracy was validated by titration of 10-80% mixture of acetylated/nonacetylated α-tubulin peptides in the background of human olfactory neurosphere-derived stem (ONS) cell matrix. Furthermore, in agreement with antibody-based high content microscopy analysis, the targeted proteomics assay reported an induction of α-tubulin K40 acetylation upon Trichostatin A stimulation of ONS cells. Independently, we found 35.99% and 16.11% α-tubulin acetylation for mouse spinal cord and brain homogenate tissue, respectively, as measured by our assay. In conclusion, this simple, antibody-free proteomics assay enables quantitation of α-tubulin acetylation, and is applicable across various fields of biology and medicine.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Tubulina (Proteína)/análise , Acetilação , Sequência de Aminoácidos , Animais , Humanos , Espectrometria de Mobilidade Iônica , Lisina/química , Camundongos Endogâmicos C57BL , Ressonância Magnética Nuclear Biomolecular , Células-Tronco , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
18.
Vet Parasitol ; 283: 109162, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32559582

RESUMO

The detection of Anisakis simplex s.s./A. pegreffii putative hybrids has been a controversial issue in spite of the fact that natural hybridization is an extended process across free living and parasitic organisms. Differential traits of biomedical and ecological importance, such as invasive and allergenic potential have been demonstrated in both cryptic species. Therefore, in this work, we discuss about the potential for hybridization between these anisakid species in sympatric zones, implementing a multi-marker Restriction fragment length polymorphism (RFLP) genotyping approach based on the ribosomal DNA internal transcribed spacer 1 (ITS1), the mitochondrial cytochrome C oxidase 2 (Cox-2) and a new nuclear marker, the highly conserved ß-tubulin gene (ß-TUB). The two cryptic species differed at least in 7 bp in the ß-TUB gene and some larvae with heterozygous genotypes at the 7 diagnostic nucleotide positions were found. Taxonomic, population and genealogical analyses served to support the occurrence of hybridization between both species. Predicted restriction endonucleases enzymes were assayed for Cox-2 and ß-TUB markers. The implemented multi-marker PCR-RFLP allowed us to detect the two pure parental species, F1 hybrids, hybrid backcrossed progeny and individuals with nuclear-mitochondrial discordance, being a useful, simple and reproducible procedure in any laboratory for epidemiological studies.


Assuntos
Anisakis/genética , Marcadores Genéticos , Genótipo , Proteínas de Helminto/análise , Polimorfismo de Fragmento de Restrição , Tubulina (Proteína)/análise , Animais , Anisaquíase/diagnóstico , Anisaquíase/parasitologia , Anisaquíase/veterinária , Anisakis/classificação , Anisakis/crescimento & desenvolvimento , DNA de Helmintos/análise , DNA Espaçador Ribossômico/análise , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/parasitologia , Técnicas de Genotipagem , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Especificidade da Espécie
19.
Sci Rep ; 10(1): 6034, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265472

RESUMO

Optogenetic methods for switching molecular states in cells are increasingly prominent tools in life sciences. Förster Resonance Energy Transfer (FRET)-based sensors can provide quantitative and sensitive readouts of altered cellular biochemistry, e.g. from optogenetics. However, most of the light-inducible domains respond to the same wavelength as is required for excitation of popular CFP/YFP-based FRET pairs, rendering the techniques incompatible with each other. In order to overcome this limitation, we red-shifted an existing CFP/YFP-based OP18 FRET sensor (COPY) by employing an sYFP2 donor and mScarlet-I acceptor. Their favorable quantum yield and brightness result in a red-shifted FRET pair with an optimized dynamic range, which could be further enhanced by an R125I point mutation that stimulates intramolecular interactions. The new sensor was named ROPY and it visualizes the interaction between the microtubule regulator stathmin/OP18 and free tubulin heterodimers. We show that through phosphorylation of the ROPY sensor, its tubulin sequestering ability can be locally regulated by photo-activatable Rac1 (PARac1), independent of the FRET readout. Together, ROPY and PARac1 provide spatiotemporal control over free tubulin levels. ROPY/PARac1-based optogenetic regulation of free tubulin levels allowed us to demonstrate that depletion of free tubulin prevents the formation of pioneer microtubules, while local upregulation of tubulin concentration allows localized microtubule extensions to support the lamellipodia.


Assuntos
Microtúbulos/genética , Microtúbulos/ultraestrutura , Optogenética , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia Confocal , Microtúbulos/química , Modelos Moleculares , Imagem Óptica , Tubulina (Proteína)/análise , Tubulina (Proteína)/genética , Tubulina (Proteína)/ultraestrutura
20.
Fertil Steril ; 113(2): 364-373.e2, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106990

RESUMO

OBJECTIVE: To demonstrate the feasibility of studying exosomes directly from peritoneal fluid, we isolated exosomes from endometriosis patient samples and from controls, and characterized their cargo. DESIGN: Case-control experimental study. SETTING: Academic clinical center. PATIENT (S): Women with and without endometriosis who underwent laparoscopic surgery (n = 28 in total). INTERVENTION (S): None. MAIN OUTCOME MEASURE (S): Concentration of exosomes within peritoneal fluid and protein content of the isolated exosomes. RESULT (S): Peritoneal fluid samples were pooled according to the cycle phase and disease stage to form six experimental groups, from which the exosomes were isolated. Exosomes were successfully isolated from peritoneal fluid in all the study groups. The concentration varied with cycle phase and disease stage. Proteomic analysis showed specific proteins in the exosomes derived from endometriosis patients that were absent in the controls. Five proteins were found exclusively in the endometriosis groups: PRDX1, H2A type 2-C, ANXA2, ITIH4, and the tubulin α-chain. CONCLUSION (S): Exosomes are present in peritoneal fluid. The characterization of endometriosis-specific exosomes opens up new avenues for the diagnosis and investigation of endometriosis.


Assuntos
Líquido Ascítico/química , Endometriose/metabolismo , Exossomos/química , Proteínas/análise , Adulto , Anexina A2/análise , Líquido Ascítico/patologia , Estudos de Casos e Controles , Endometriose/patologia , Exossomos/ultraestrutura , Estudos de Viabilidade , Feminino , Histonas/análise , Humanos , Pessoa de Meia-Idade , Peroxirredoxinas/análise , Proteínas Secretadas Inibidoras de Proteinases/análise , Proteômica , Tubulina (Proteína)/análise , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA